Developing Sustainable Transportation Performance

Measures for ALDOT

By

Dr. Houssam A. Toutanji (PI), Dr. Michael Anderson (Co-PI) Dr. Kathleen M. Leonard (Co-PI) Department of Civil, Construction, & Environmental Engineering The University of Alabama in Huntsville Huntsville, Alabama

Prepared by

University Transportation Center for Alabama

The University of Alabama, The University of Alabama at Birmingham, and The University of Alabama in Huntsville

> UTCA Report Number 12302 June 2013

UTCA Theme: Management and Safety of Transportation Systems

DEVELOPING SUSTAINABLE TRANSPORTATION PERFORMANCE MEASURES FOR ALDOT

Bу

Dr. Houssam A. Toutanji (PI), Dr. Michael Anderson (Co-PI) Dr. Kathleen M. Leonard (Co-PI) Department of Civil, Construction, & Environmental Engineering The University of Alabama in Huntsville Huntsville, Alabama

Prepared by

University Transportation Center for Alabama

The University of Alabama, The University of Alabama at Birmingham, and The University of Alabama in Huntsville

UTCA Report Number 12302 June 2013

University Transportation Center for Alabama

About UTCA The University Transportation Center for Alabama (UTCA) is headquartered in the Department of Civil, Construction, and Environmental Engineering at the University of Alabama (UA). Interdisciplinary faculty members perform research, education, and technology-transfer projects using funds provided by UTCA and external sponsors.

Mission Statement and Strategic Plan The mission of UTCA is "to advance the technology and expertise in the multiple disciplines that comprise transportation through the mechanisms of education, research, and technology transfer while serving as a university-based center of excellence."

The UTCA strategic plan contains six goals that support this mission:

- Education conduct a multidisciplinary program of coursework and experiential learning that reinforces the theme of transportation;
- Human Resources increase the number of students, faculty and staff who are attracted to and substantively involved in the undergraduate, graduate, and professional programs of UTCA;
- Diversity develop students, faculty and staff who reflect the growing diversity of the US workforce and are substantively involved in the undergraduate, graduate, and professional programs of UTCA;
- Research Selection utilize an objective process for selecting and reviewing research that balances the multiple objectives of the program;
- Research Performance conduct an ongoing program of basic and applied research, the products of which are judged by peers or other experts in the field to advance the body of knowledge in transportation; and
- Technology Transfer ensure the availability of research results to potential users in a form that can be directly implemented, utilized or otherwise applied.

Theme The UTCA theme is *"MANAGEMENT AND SAFETY OF TRANSPORTATION SYSTEMS."* UTCA concentrates upon the highway and mass transit modes but also conducts projects featuring rail, waterway, air, and other transportation modes as well as intermodal issues.

Disclaimer The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Alabama DOT, the University of Alabama, or UTCA, and they assume no liability for the contents or use thereof. This report does not constitute a standard, specification, or regulation. Comments contained in this report related to specific testing equipment and materials should not be considered an endorsement of any commercial product or service; no such endorsement is intended or implied.

1. Report No.	nical Report I 2. Government		3. Recipient Catalog No.	
-				
4. Title and Subtitle		5. Report Da	ate	
Developing Sustainable Transportation	Performance	June 2013		
Measures for ALDOT		6. Performin	ng Organization Code	
7. Authors		8. Performi	ng Organization Report No.	
Dr. Houssam A. Toutanji		UTCA Final	Report Number 12302	
Dr. Michael Anderson				
Dr. Kathleen Leonard				
9. Performing Organization Name an	d	10. Work U	nit No.	
Address				
Department of Civil and Environmental	Eng.			
TH-S201, Technology Hall		11. Contract or Grant No.		
The University of Alabama in Huntsvill	e			
Huntsville, AL 35899				
12. Sponsoring Agency Name and Ad			Report and Period Covered	
University Transportation Center for Al	abama	1/1/2012 - 12	2/31/2012	
The University of Alabama			~ .	
Box 870205		14. Sponsor	ing Agency Code	
Tuscaloosa, AL 35487-0205				
15. Supplementary Notes				
~~ V				
16. Abstract				
Sustainable transportation is generally u	sed to refer to tra	nsportation that co	ontributes to the sustainable develop	

Technical Report Documentation Page

Sustainable transportation is generally used to refer to transportation that contributes to the sustainable development of the community that owns and uses the system. The Transportation Research Board defines sustainability as: "Sustainability is not about threat analysis; sustainability is about systems analysis. Specifically, it is about how environmental, economic and social systems interact to their mutual advantage or disadvantage at various spacebased scales of operation." The research project was designed to establish a baseline understanding of the potential for using sustainability initiatives have discussed various definitions and performance measures of sustainable transportation systems, but very few regional agencies have developed planning tools that successfully incorporate sustainability in the transportation sector. This study develops a working definition of sustainability from various proposed definitions, and demonstrates a feasible methodology for evaluating and quantifying sustainability performance measures, thus incorporating sustainability considerations into the regional transportation decision-making process.

17. Key Words Sustainability, Measuremet Gas Emissions	nt, Environment; Greenhouse	18. Distribution Stat	ement	
19. Security Classification (of this report) Unclassified	20. Security Classification (of this page) Unclassified	21. No of Pages 48	22. Price	

Form DOT F1700.7 (8-72)

Table of Contents

Table of Contents	ii
List of Tables	iii
Executive Summary	iv
1.0 Introduction	
1.1 Background	1
1.2 Project Objectives	3
1.3 Work Tasks	3
2.0 Literature Review	4
2.1 Integrating Sustainability Concepts into Transportation planning	6
2.2 Sustainability Performance Measures by other DOT's	8
3.0 Sustainability Performance-Measurement Framework	
3.1 Sustainability Indicators	
3.2 Performance Measures Currently Used by ALDOT	
3.3 Selection of Performance Measures	
4.0 Conclusion	
5.0 Acknowledgements	
6.0 References	
7.0 Appendix A	41

List of Tables

1-1 Sustainable Transportation Issues	2
2-1 Sustainability in the Missions of State Departments of Transportation (U.S.)	4
2-2 Project Development by criteria Scorecard by FHWA's	8
2-3 Credit Scorecard (Complete List of Credits)	11
2-4 Greenroads Listing by Category	12
2-5 GreenLITES Project Environmental Sustainability Rating System Scorecard	15
2-6 I-LAST Project Environmental Sustainability Rating System Scorecard	17
3-1 Timeline of Indicator Development	30
3-2 Potential Sustainability Indicators in General	31
3-3 Sustainable Performance Measures to be adopted by ALDOT	34

Executive Summary

The purpose of this report is to describe how Alabama Department of Transportation (ALDOT) may increase its use of performance measures in transportation for sustainability. There simply cannot be improvement without measurement. Performance measurement is typically successful when meaningful measures are selected, the proper data needed for the measurement is obtained, and the measurement is incorporated into an overall planning process that guides decision making based off the measurement. Performance based planning uses various performance measures to influence agency decisions, particularly policy and resource allocation decisions, and implementing the "right" measures is a key element.

Sustainable transportation is generally used to refer to transportation that contributes to the sustainable development of the community that owns and uses the system. The Transportation Research Board defines sustainability as:

"Sustainability is not about threat analysis; sustainability is about systems analysis. Specifically, it is about how environmental, economic and social systems interact to their mutual advantage or disadvantage at various space-based scales of operation."

Sustainability involves improving energy efficiency, reducing dependence on oil, reducing greenhouse gas emissions and benefiting the environment. The project aims at developing the indicators within the confines of strategic planning goals to measure sustainability of transportation systems. The project would increase energy efficiency by allowing for smooth and consistent travel speeds, with a reduction in the frequency of stops, continued braking, or downshifting in the roadway section under study, when capacity is reached. It is expected that consistent travel at a consistent speed would improve energy efficiency.

1. Introduction

1.1 Background

Identified as a global priority by the United Nations in the early 1980s, the concept of sustainable development is most commonly defined as "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs" (World Commission on Environment and Development, 1987). There is no single definition for the "sustainable" transportation system. According to the definition given by the Transportation Research Board Sustainable Transportation Indicators Subcommittee, a sustainable transport system is one that

- Allows the basic access and development needs of individuals, companies, and society to be met safely and in a manner consistent with human and ecosystem health, and promotes equity within and between successive generations.
- 2. Is affordable, operates fairly and efficiently, offers a choice of transport mode, and supports a competitive economy, as well as balanced regional development.
- 3. Limits air, water, and noise emissions, waste, and resource use. Limits emissions and waste within the planet's ability to absorb them, uses renewable resources at or below their rates of generation, and uses non-renewable resources at or below the rates of development of renewable substitutes, while minimizing the impact on the use of land and the generation of noise.

The aim of this project is to research current transportation systems and develop a set of performance measures appropriate for establishing the sustainable level of performance for Alabama's transportation system. Sustainable transportation goals include:

- 1. Environmental Quality
 - Public health
 - Ecosystem viability
- 2. Economic Development
 - Quality of life
 - Mobility that supports economic growth

3. Social Equity

- Affordable mobility
- Mobility for all socioeconomic groups

Why are Sustainability and Performance Measures Important in Transportation?

The importance of sustainable development in the transportation sector is clearly indicated by the fact that a large number of transportation agencies have started to consider and integrate the concept of sustainability in their activities. In the United States, for example, over 40% of state departments of transportation (DOTs) have incorporated some element of sustainability into their vision or mission statements (Jeon et al., 2007). State DOTs are mission-driven organizations that strive to simultaneously achieve multiple strategic goals such as improving safety, reducing congestion, enhancing economic opportunity, contributing to community vitality, improving air quality, improving reliability, and preserving system assets. They have been experimenting with, refining, expanding, and enhancing their performance measurement systems over that period. Transportation agencies are arguably often on the leading edge of results-oriented management and performance measurement practices at all levels of government.

The goal of the Transportation Division (State DOT's) is to provide adequate, efficient and safe transportation services and mobility for the general public while considering the economic, social and environmental needs as described in Table 1-1.

Economic	Social	Environmental
Accessibility quality	Equity/ fairness	Air pollution
Traffic congestion	Aesthetics	Climate change
Infrastructure costs	Affordability	Noise pollution
Consumer costs	Human health impacts	Water pollution
Mobility barriers	Community cohesion	Hydrologic impacts
Accident damages	Community livability	Habitat and ecological
		degradation
Depletion of non-renewable	Impacts on mobility	Depletion of non-renewable
resources	disadvantaged	resources

Table 1-1: Sustainable Transportation Issues (Litman and Burwell, 2006)

1.2 Objectives

The following are the main objectives of this project:

- 1. Develop an understanding of sustainable transportation.
- 2. Review major studies and initiatives of sustainable transportation.
- 3. Create a framework for using sustainable transportation performance measures based on the types of applications that need to be supported.
- 4. Develop a methodology that can be implemented in the form of a sustainability enhancement tool.
- 5. Develop sustainable transportation performance measures to address ALDOT's strategic plan goals.
- 6. Identify data elements and data sources required to quantify the measures.

1.3 Work Tasks

The state of Alabama is a leader in providing an opportunity for researchers. The project is organized into the following sequential tasks:

Task 1. Literature and Information Collection

The first task for the study is to conduct a literature review and summarize relevant literature and ongoing relevant research, including that related to independent sustainability and environmental stewardship certification systems.

Task 2. Developing Sustainability Objectives and performance parameters of Importance for Alabama

After completing Task 1, the team will develop a performance-measurement framework for the implementation of sustainability enhancement specific to highways.

Task 3. Developing sustainable transportation performance measures

The items identified in Tasks 1 & 2 will be analyzed and related to sustainable performance measures that can be applied to ALDOT. Task 3 objectives are to identify best practices used by other transportation departments that have incorporated sustainability in their goals and objectives.

2. Literature Review

In order to effectively determine which performance measures were appropriate for Alabama's transportation infrastructure, it was necessary to examine the existing research and literature on performance measures. Several other state DOTs have well-established performance measurement systems and mission statements (Table 2-1) from which best practices can be learned.

Departments/States	Mission Statement
U.S. Department of	"Serve the United States by ensuring a fast, safe, efficient, accessible,
Transportation	and convenient transportation system that meets our vital national
(Sep. 21. 2007)	interests and enhances the quality of life of the American people, today
	and into the future."
Alabama	"To provide a safe, efficient, environmentally sound intermodal
	transportation system for all users, especially the taxpayers of Alabama.
	To also facilitate economic and social development and prosperity
	through the efficient movement of people and goods and to facilitate
	intermodal connections within Alabama."
Florida	"The Department will provide a safe transportation system that ensures
(Sep. 21, 2007)	the mobility of people and goods, enhances economic prosperity and
	preserves the quality of our environment and communities."
Georgia	"The Georgia Department of Transportation provides a safe, seamless,
(Sep. 21, 2007)	and sustainable transportation system that supports Georgia's economy
	and is sensitive to its citizens and environment."
Hawaii	"To provide a safe, efficient, accessible, and inter-modal transportation
	system that ensures the mobility of people and goods, and enhances
	and/or preserves economic prosperity and the quality of life."
Indiana	"INDOT will build, maintain, and operate a superior transportation
(Sep. 21, 2007)	system enhancing safety, mobility and economic growth."
Louisiana	"To deliver transportation and public works systems that enhances

 Table 2-1
 [5]: Sustainability in the Missions of State Departments of Transportation (U.S.)

(Updated, Sep. 21,	quality of life and facilitates economic growth and recovery."
2007)	
Michigan	"Providing the highest quality integrated transportation services for
(Sep. 21, 2007)	economic benefit and improved quality of life."
Montana	"Montana MDT's mission is to serve the public by providing a
(Sep. 21, 2007)	transportation system and services that emphasize quality, safety, cost
	effectiveness, economic vitality and sensitivity to the environment."
New Hampshire	"To plan, construct, and maintain the best possible transportation system
	and State facilities in the most efficient, environmentally sensitive, and
	economical manner, utilizing quality management techniques consistent
	with available resources and mandated controls."
New Jersey	"Improving Lives by Improving Transportation."
(June 26, 2007)	
New York	"To ensure our customers those who live, work, and travel in New
(Sep. 21, 2007)	York State have a safe, efficient, balanced, and environmentally sound
	transportation system.
Nevada	"To efficiently plan, design, construct and maintain a safe and effective
(Sep. 21, 2007)	transportation system for Nevada's travelers taking into consideration the
	environment, economic and social needs and intermodal transportation
	opportunities."
North Carolina	"Connecting people and places in North Carolina – safely and efficiently,
	with accountability and environmental sensitivity."
Ohio	"To provide a world-class transportation system that links Ohio to a
	global economy while preserving the state's unique character and
	enhancing its quality of life."
Oregon	"To provide a safe and efficient transportation system that supports
(Sep. 21, 2007)	economic opportunity and livable communities for Oregonians"
Rhode Island	"To maintain and provide a safe, efficient, environmentally, aesthetically
(Sep. 21, 2007)	and culturally sensitive intermodal transportation network that offers a
	variety of convenient, cost-effective mobility opportunities for people
	and the movement of goods supporting economic development and
	improved quality of life."

South Dakota (Sep. 21, 2007)	"We provide a transportation system to satisfy diverse mobility needs in a cost effective manner while retaining concern for safety and the environment."
Texas	"To work cooperatively to provide safe, effective, and efficient movement of people and goods."
Utah	"Quality Transportation Today, Better Transportation Tomorrow."
Vermont	"To provide for the movement of people and commerce in a safe,
(Updated, Sep. 21, 2007)	reliable, cost-effective and environmentally responsible manner."
West Virginia	"To create and maintain for the people of West Virginia, the United
(Sep. 21, 2007)	States and the world a multi-modal and inter-modal transportation system
	that supports the safe, effective and efficient movement of people,
	information and goods that enhances the opportunity for people and
	communities to enjoy environmentally sensitive and economically sound
	development."

2.1 Integrating Sustainability Concepts into Transportation Planning

First and foremost, the concept of sustainability has to be clearly understood. Few could disagree that attainment of a sustainable transportation system is desirable despite many challenges. The state DOT's have enhanced the quality of life which has not been achieved without costs. The negative impacts of the transportation system include congestion, fatalities and injuries, noise, air, and water pollution, greenhouse gas emissions, diminishing energy resources, and biological and ecosystem damage. The challenge of a sustainable transportation system lies in minimizing these costs while offering strong transportation benefits. The following best describe the various unsustainable impacts:

2.1.1 Non-renewable Fuel Depletion and Energy Insecurity

The current transportation system depends on non-renewable resources, and the rate of consumption is gradually increasing. The challenge is in finding more renewable resources to satisfy the definition of sustainability.

2.1.2 Greenhouse gas emissions

The burning of fossil fuels and petroleum products to run vehicles emit greenhouse gases contributes to global warming. Improved fuel efficiency and use of alternative fuels reduce the greenhouse effect.

2.1.3 Global Climate Change

Increased emission of greenhouse gases will have significant impacts on sea level, climate, and agriculture. Rise in the sea level causes flooding of the land. It appears to be too late to prevent or completely reverse the climate change.

2.1.4 Local Air Quality

The vehicles emit carbon dioxide which significantly contributes to local air pollution. Poor air quality has various health impacts. Therefore, air quality regulations should be made for substantial air quality improvements.

2.1.5 Fatalities and Injuries

Gruesome fatalities and injuries occur on the highways. Sustainability argues for a decrease in fatalities and injuries.

2.1.6 Congestion

Congestion is a great sustainability issue because it worsens motorized mobility. It negatively affects the economic and social health of the nation, but it also has some positive implications for sustainability because congested highways cause some people to choose alternative modes of transportation.

2.1.7 Noise Pollution

The transportation system is a significant source of noise. Despite the progress that has been made, new methods, technologies and policies to reduce noise pollution are required.

2.1.7 Low Mobility

A reasonable level of mobility is an essential characteristic of a sustainable transportation system. Transportation must be available to all members of the community, including people with low income, physically challenged, the elderly, and children.

2.1.8 Ecosystem Damage

Transportation activities can cause biological damage. With the increase in population and travel volume, very little care is taken towards endangered species. A continuous effort should be made to maintain and improve on areas of wildlife habitat.

7

2.1.9 Lack of equity

Intergenerational and social equity are the overarching aims of a sustainable transportation system. Properly planned transportation systems can play a central role in promoting sustainability.

2.2 Sustainability Performance Measures by other DOT's

Another application of sustainability performance measures in the transportation sector involves the use of rating systems for sustainability. In general, a rating system for transportation sustainability provides a framework for scoring and evaluating various projects or alternatives that contain a checklist of potentially sustainable practices.

The following lists selected transportation sustainability rating systems that were reviewed as part of this research:

2.2.1 Federal Highway Administration's (FHWA's) Sustainable Highways

FHWA developed INVEST (Infrastructure Voluntary Evaluation Sustainability Tool) as a tool, called criteria, to help transportation agencies integrate sustainability into their programs. There are 60 criteria within INVEST organized into three modules – System Planning, Project Development, and Operations and Maintenance. There is a scorecard for each module, and the scorecard for Project Development is shown in Table 2-2.

	5	1	5	5		
	Paving	Basic Rural	Basic Urban	Extended Rural	Extended Urban	Custom
PD-01: Economic Analyses		Х	Х	Х	Х	
PD-02: Life-Cycle Cost Analyses	Х	Х	Х	Х	Х	Х
PD-03: Context Sensitive Project Development	Х	Х	Х	Х	Х	Х
PD-04: Highway and	Х	Х	Х	Х	Х	Х

Table 2-2^[19]: Project Development by criteria scorecard by FHWA's

Traffic Safety						
PD-05: Educational Outreach	Х	X	X	X		X
PD-06: Tracking Environmental Commitments		X	X	X		
PD-07: Habitat Restoration	Х	X	X	X	Х	
PD-08: Stormwater		X	X	X	Х	X
PD-09: Ecological Connectivity	Х	X	X	X	Х	X
PD-10: Pedestrian Access			X		Х	X
PD-11: Bicycle Access	Х	X	X		Х	X
PD-12: Transit & HOV Access			X	X	Х	X
PD-13: Freight Mobility		X	Х	X	Х	X
PD-14: ITS for System Operations	Х		Х	X	Х	
PD-15: Historical, Archaeological, and Cultural Preservation	Х		Х	X	Х	X
PD-16: Scenic, Natural, or Recreational Qualities		X	X		Х	X
PD-17: Energy Efficiency		X	Х		Х	X
PD-18: Site Vegetation	Х	X	X	X	Х	

PD-19: Reduce and Reuse Materials	Х	X	X	X	Х	
PD-20: Recycle Materials		Х	X	X	Х	X
PD-21: Earthwork Balance		Х	X	X	Х	
PD-22: Long-Life Pavement Design		Х	X	X	Х	X
PD-23: Reduced Energy and Emissions in Pavement Materials	Х		X	X	Х	x
PD-24: Contractor Warranty		Х	X	X		
PD-25: Construction Environmental Training		Х	X			X
PD-26: Construction Equipment Emission Reduction		X	X		Х	
PD-27: Construction Noise Mitigation		X	X		Х	
PD-28: Construction Quality Control Plan		X	X	Х	Х	X
PD-29: Construction Waste Management		X	X			
Total number of criteria in Scorecard	12	24	29	21	25	19

2.2.2 Sustainable Transportation Access Rating System (STARS)

Framework applies 29 credits organized into six categories: integrated process, access, climate and energy, ecological function, cost effectiveness analysis, and innovation as shown in Table 2-3 below.

Integrate	ed Process			
IP1	Establish Project Framework and Goals (Required)			
IP2	Multi-Discipline Project Team			
IP3	Public Stakeholder Engagement			
Access				
Al	Establish Access Goals and Objectives (required)			
A2	Evaluate Expanded Transportation Demand Management Strategies			
A3	Evaluate Expanded Transportation System Management Strategies			
A4	Evaluate Expanded Land Use Strategies			
A5	Evaluate Expanded Transportation Supply and Service			
A6	Select Preferred Strategies from A2-A5			
A7	Implement Selected Strategies			
A8	Assess Performance Over Time			
Climate	and Energy			
CE1	Establish Climate and Energy Goals and Objectives (Required)			
CE2	Evaluate Vehicle Mile Reduction Strategies			
CE3	Evaluate Improving Vehicle Flow			
CE4	Evaluate Construction Materials and Methods			
CE5	Evaluate Renewable Energy and Energy Efficiency			
CE6	Cleaner Vehicles and Fuels Goal and Evaluation			
CE7	Maintenance and Preservation Goal and Evaluation			
CE8	Carbon Offset Evaluation			
CE9	Implement Climate and Energy Strategies			
CE10	Climate and Energy Performance			

 Table 2-3^[6]: Credit Scorecard (Complete List of Credits)

Ecologica	Ecological Function						
EF1	Identify and Quantify Ecological Resources (Required)						
EF2	Protect and Restore Ecological Functions						
EF3	Stormwater Quantity and Quality Management						
EF4	Integrated Stormwater Management						
Cost Effe	ctive Analysis						
CEA1	Cost Estimation and Cost-Effective Calculations						
CEA2	Selecting Cost-Effective Projects and Programs						
Innovatio	n						
IV1	Additional Actions Resulting in More Access and/or GHG Reductions						
IV2	Actions Improving STARS Effectiveness						

2.2.3 Greenroads

Greenroads is a project-based sustainability rating system. Performance metric awards points for more sustainable practices during the design and construction phases of roadway projects as shown in Table 2-4.

No.	Title	Pts.	Description
Project	Requirements (PR)		-
PR-1	NEPA Compliance or Equivalent	Req	Conform to NEPA or equivalent
PR-2	Life Cycle Cost Analysis (LCCA)	Req	Perform LCCA for pavement section
PR-3	Life Cycle Inventory (LCI)	Req	Perform LCI of pavement section
PR-4	Quality Control Plan	Req	Have a formal contractor quality control plan
PR-5	Noise Mitigation Plan	Req	Have construction noise mitigation plan
PR-6	Waste Management Plan	Req	Have a plan to divert C&D waste from landfill
PR-7	Pollution Prevention Plan	Req	Have a TESC/SWPPP
PR-8	Low-Impact Development (LID)	Req	Use LID stormwater management where applicable

Table 2-4^[7]: Greenroads Listing by Category

PR-9	Pavement Maintenance	Req	Have a pavement preservation system
PR-10	Site Maintenance	Req	Have a roadside maintenance plan
PR-11	Educational Outreach	Req	Publicize sustainability information for
			project
Volunta	ary Credits		
Enviro	nment & Water (EW)		
EW-1	Environmental Management System	2	ISO 14001 certification for general
			contractor
EW-2	Runoff Quantity	3	Reduce runoff quantity
EW-3	Runoff Quality	3	Treat stormwater to a higher level of
			quality
EW-4	Stormwater LID/BMP Cost Analysis	1	Conduct an LCCA for stormwater
			BMP/LID selection
EW-5	Native Re-vegetation	3	Use native low/no water vegetation
EW-6	Habitat Restoration	3	Create new habitat beyond what is
			required
EW-7	Ecological Connectivity	3	Connect habitat across roadways
EW-8	Light Pollution	3	Discourage light pollution
	EW Subtotal	21	
Access	& Equity (AE)		
AE-1	Safety Audit	2	Perform roadway safety audit
AE-2	Intelligent Transportation Systems	5	Implement ITS solutions
	(ITS)		
AE-3	Single-Occupant Vehicle (SOV)	5	Reduce SOV use through quantifiable
	Reduction		methods
AE-4	Context Sensitive Planning	5	Plan for context sensitive solutions
AE-5	Pedestrian Access	2	Provide/improve pedestrian
			accessibility
AE-6	Bicycle Access	2	Provide/improve bicycle accessibility
AE-7	Transit Access	5	Provide/improve transit accessibility
AE-8	Scenic Views	2	Provide views of scenery or vistas
AE-9	Cultural Outreach	2	Promote art/culture/community values
	AE Subtotal	30	1
Constru	uction Activities (CA)		

CA-1	Quality Process Management	2	ISO 9001 certification for general
			contractor
CA-2	Environmental Awareness Training	1	Provide environmental training
CA-3	On-Site Recycling Plan	1	Provide on-site recycling and trash
			collection
CA-4	Fossil Fuel Use Reduction	2	Use alternative fuels in construction
			equipment
CA-5	Equipment Emission Reduction	2	Meet EPA Tier 4 standards for non-
			load equip.
CA-6	Paving Emission Reduction	1	Use pavers that meet NIOSH
			requirements
CA-7	Water Use Monitoring	2	Develop data on water use in
			construction
CA-8	Performance-Based Warranty	3	Warranty on the constructed pavement
	CA Subtotal	14	
Materia	als & Resources (MR)		
MR-1	Full Life Cycle Assessment (LCA)	2	Conduct a detailed LCA of the entire
			project
MR-2	Pavement Reuse	5	Reuse existing pavement sections
MR-3	Soil Rehabilitation	1	Use native soil rather than import fill
MR-4	Recycled Materials	5	Use recycled materials for new
			pavement
MR-5	Regional Materials	5	Use regional materials to reduce
			transportation
MR-6	Energy Efficiency	5	Improve energy efficiency of
			operational systems
	MR Subtotal	23	
Paveme	ent Technologies (PT)		
PT-1	Long-Life Pavement	5	Design pavements for long-life
PT-2	Permeable Pavement	3	Use permeable pavement as a LID
			technique
PT-3	Warm Mix Asphalt (WMA)	3	Use WMA in place of HMA
PT-4	Cool Pavement	5	Contribute less to urban heat island
			effect (UHI)

PT-5	Quiet Pavement	3	Use a quiet pavement to reduce noise					
PT-6	Pavement Performance Monitoring	1	Relate construction to performance data					
	PT Subtotal	20						
Volunt	Voluntary Credit Total							
Custon	n Credits (CC)							
CC-1	Custom Credits	10	Design your own credit					
	CC Subtotal	10						
	Greenroads Total	118						

2.2.4 GreenLITES

The GreenLITES program includes rating systems (Table 2-5), spreadsheets, and other metrics to assess projects, plans, operations and maintenance programs, and regional programs.

C	ategory	ID	Description	Poi	nts
				Available	Scored
	S-1	S-1a	Avoidance of previously undeveloped	2	
	Alignment		lands(open spaces or "Greenfields")		
	Section	S-1b	Selecting an alignment that establishes a	2	
			minimum 100-foot buffer zone between the		
			edge of the pavement and the natural water		
			course or significantly sized natural		
			wetland to serve the purpose of stormwater		
(S)			filtration		
Sustainable Sites(s)		S-1c	Alignments which minimize overall	2	
Si			construction "footprint". Examples: Use of		
able			retaining walls, selecting design option with		
hing			minimal footprint.		
uste		S-1d	Design vertical alignments which minimize	1	
S			total earth work.		
		S-1e	Adjust alignment to avoid or minimize	1	
			impacts to social or environmental		
			resources (avoidance of park lands, wet		
			lands, historic sites, farm lands, residential		
			and commercial buildings, etc.)		
		S-1f	Alignments that optimize benefits among	1	
			competing constraints (the goal is not		

 Table 2-5^[8]: GreenLITES Project Environmental Sustainability Rating System Scorecard

		T.		·	
			always the minimum length alignment, but		
			the one with the best benefit overall).		
		S-1g	Micro-adjustments that do not compromise	1	
			safely or operation but that might make the		
			difference in providing sufficient clear area		
			for free planting.		
		S-1h	Clear zones seeded with seed mixtures that	1	
			help to reduce maintenance needs and		
			increase carbon sequestration.		
		S-1i	Provide a depressed roadway alignment.	1	
		S-1j	Use of launched soil nails as a more cost	1	
		_	effective option to stabilize a slope rather		
			than, for example, closing a road to		
			construct a retaining wall which may		
			negatively affect traffic flow and		
			neighboring properties.		
	S-2	S-2a	Adjust or incorporate highway features to	2	
	Context		respond to the unique character or a sense		
	Sensitive		of place (both natural and built) of the area		
	Solutions		("Unique character" means whatever		
			identifiable elements makes a place		
			distinctly, memorable, important to the		
			community, etc landmarks, views,		
			historic bridges and buildings, parkways,		
			characteristic use of material, a notable		
			stand of trees, etc.		
		S-2b	Incorporate local or natural materials for	2	
			substantial visual elements (e.g., bridge		
			fascia, retaining walls).		
		S-2c	Visual enhancements (screening	2	
			objectionable views, strategic placement of		
			vegetation, enhancing scenic views,		
			burying utilities, etc.).		
		S-2d	Period street	1	
			furniture/lighting/appurtenances.		
		S-2e	Inclusion of visually-contrasting (colored	1	
		-	and/or textured) pedestrian crosswalk		
			treatments.		
		S-2g	Follow the NYS Bridge Manual, Section 23	1	
		8	– Aesthetics.	-	
L					

S-2h	Site material selection & detailing to reduce overall urban "heat island" effect.	1	
S-2i	Permanently protect view sheds via environmental or conversation easements.	1	
S-2j	Color anodizing of aluminum elements (ITS cabinets, non-decorative light poles, etc.)	1	
S-2k	Decorative bridge fencing (in lieu of standard chain link).	1	
S-21	Use of concrete from liners (for bridge approach barriers, parapet walls, retaining walls, noise walls, bridge piers & abutments, etc.)	1	
S-2m	Imprinted concrete/asphalt mow strips, gores and/or snow storage areas.	1	

2.2.5 Illinois Livable and Sustainable Transportation System and Guide (I-LAST)

I-LAST is a checklist of potentially sustainable practices followed by a description of the intent of each category in the checklist and the rationale and measures of effectiveness for each item as shown in Table 2-6. Lists of source materials and additional background resources for each item assist in understanding and applying the practices.

Category		ID	Description	Points	
				Available	Scored
		P-1a	Identify Stakeholders and develop	2	
			Stakeholders Involvement Plan		
	P-1	P-1b	Engage Stakeholders to conduct	2	
ing	Context		Context Audit and develop project		
Planning	Sensitive		purpose		
н	Solutions	P-1c	Involve Stakeholders to develop and	2	
			evaluate alternatives		
		P-1d	Employ Stakeholder involvement	2	

 Table 2-6^[9]: I-LAST Project Environmental Sustainability Rating System Scorecard

			techniqu	es to achieve consensus for		
			Preferre	d Project Alternative		
		P-2a	Promote	reduction in vehicle trips by	2	
			accomm	odating increased use of		
			public tr	ansit		
		P-2b	Accomn	nodate multi-modal	2	
			transpor	tation uses (e.g. transit riders,		
	P-2		pedestria	ans, and bicyclists)		
	Land Use /	P-2c	Increase	transportation efficiencies for	2	
	Community		moving	freight through features such		
	Planning		as dedic	ated rail or intermodal		
			facilities	5		
		P-2d	Partners	hips that provide	2	
			environ	nental or technological		
			advance	ments while promoting		
			environ	nental stewardship		
		P-2e	Project i	s consistent with regional	2	
			plans an	d local managed growth-based		
			Master of	or Comprehensive Plans		
		P-2f	Project i	s compatible with local efforts	1	
			for Tran	sit Oriented Design		
		D-1a	Avoid in	npacts to high quality undevelop	bed lands	
			D-1a-1	Avoid all impacts	2	
			D-1a-2	Avoid significant impacts	1	
		D-1b	Provide	buffer between highway and hig	gh quality	
			wetlands	s/water resources		
			D-1b-1	Provide 100 foot buffer to	2	
				resources		
			D-1b-2	Avoid resource with less than	1	
	D-1			100 foot buffer		
Design	Alignment	D-1c	Avoid in	npacts to environmental resourc	es, such as I	NAI sites
De	Selection		and sites	s with threatened or endangered	species	

			D-1c-1	Avoid all impacts	2				
				-					
			D-1c-2	Avoid significant impacts	1				
		D-1d		Avoid impacts to socioeconomic resources					
			D-1d-1	Avoid all impacts	2				
			D-1d-2	Avoid significant impacts	1				
		D-1e	Cross se	ction minimizes overall	2				
			construc	tion "footprint" to					
			eliminat	e R.O.W. takes					
		D-1f	Minimiz	te total earthwork by matching	1				
			proposed	d vertical alignments as closely					
			as possil	ole to existing grades					
		D-1g	Utilize b	prownfield locations	2				
		D-2a	Adjust h	ighway features using design	2				
			flexibili	ty					
	D-2	D-2b	Incorporate locally produced or native n		naterials				
			D-2b-1	Over 95% of materials	1				
	D-2			sourced in US					
	Context		D-2b-2	Over 60% of materials	2				
	Sensitive			sourced in metro area					
	Design	D-2c	Visual e	nhancements	2				
		D-2d	Items fit	context of surroundings	1				
		D-2e	Bridge a	esthetics	1				
		D-2f	Reduce	urban "heat island" effect	1				
		E-1a	Avoid h	abitat fragmentation	3				
		E-1b	Minimiz	e habitat fragmentation	2				
		E-1c	Mitigate	habitat fragmentation	1				
		E-1d	Wetland	restoration/mitigation	1 to 3				
tal	E-1	E-1e	Provide	nesting locations	2				
men	Protect,	E-1f	Provide	wildlife crossings	2				
Environmental	Enhance/	E-1g	Provide	fish passage	2				
Env	Restore	E-1h	Provide	mussel relocation prior to	2				
L	1	1	1		L I				

Wildlife		construc	tion		
and its	E-1i	Provide	right-of-way wildlife barriers	1	
Habitat	E-1j	Provide	mowing markers	1	
	E-1k	Schedul	e construction to avoid wildlife	1	
		disruptio	on		
	E-2a	Avoidan	ce/protection of individual and	2	
		contigue	ous stands of specimen trees		
		and loca	lized areas of established,		
		desirable	2		
		vegetatio	on		
	E-2b	Designs	which demonstrate an anticipate	ed ultimate net	t
		increase	in tree species		
		E-2b-1	Increase tree species through	2	
			preservation and new		
			planting		
E-2		E-2b-2	Coordination with local	2	
Trees and			stakeholders to create a plant		
Plant			palette in context with		
Communitie	es		community		
		E-2b-3	Historic native plantings are	1	
			re-established		
	E-2c	Re-estab	lish/expand native vegetation	2	
		in reclai	med work areas or abandoned		
		old aligr	nments		
	E-2d	Use of p	lant material in lieu of or	1	
		enhance	structural such as living snow		
		fences, s	sight screens (viburnum,		
		dogwoo	d, etc.)		
	E-2e	Use of n	ative species for plugs, seed	2	
		mixes, p	erennial and other plantings		
	E-2f	Planting	trees, shrubs and/or native	2	
		plant ma	terial in highway right-of-way		

		E-2g	Tree rep	lacement ratios at greater than	2
		0	1:1		
		E-2h		e potential salt splash impacts	2
		2 20		use of berms or vegetative	_
			screenin	-	
		E-2i		b l of undesirable plant species,	1
		L-21		of invasive species	
		E-2j		preservation	2
		E-2J E-3a	_	ction of noise barriers	
		E-Ja	E-3a-1		2
			E-3a-1	Specialized noise barrier construction	
			E-3a-2		1
	E-3	E 21		Typical noise barrier	
	Noise	E-3b	_	rate traffic system management	2
	Abatement		_	es to reduce existing noise	
	Abatement	F 2	levels		
		E-3c		a buffer zone for adjacent	2
		E 01	receptor		
		E-3d		sound insulation to public or	1
			_	fit institutional structures	
		E-3e	_	f pavement to reduce noise	1
			levels		
		E-3f		plantings or sight screen to	
				receptors from roadway	
		W-1a	Use of d		2
	W-1	W-1b	_	ment of paved median	2
lity	Reduce	W-1c		on of paved shoulder areas	2
Water Quality	Impervious	W-1d		on of paved shoulder areas	2
ater	Area	W-1e	Replace	ment of paved bike paths with	2
W	permeable pavement			le pavement or permeable	
			material		
		W-2a	Use of b	ioretention cells	2

		W-2b	Use of co	nstructed wetlands	2	
		W-2c	Use of bio	oswales	2	
		W-2d	Use of me	echanical stormwater	2	
	W-2		treatment	systems		
	Stormwater	W-2e	Use of cat	tch basins	1	
	Treatment	W-2f	Use of inf	iltration trenches	1	
		W-2g	Use of rai	n gardens	1	
		W-2h	Use of sar	nd filters	1	
		W-2i	Use of dit	ch checks	1	
		W-2j	Use of sec	liment traps and forebays	1	
		W-3a	Analysis of	of pollutants in stormwater	1	
		W-3b	Stream ba	nk restoration	2	
		W-3c	Practices	to protect highly erodible soils	II	
			W-3c-1	Special provisions for soil	2	
				erosion control at stream		
	W-3			crossings		
	Construction		W-3c-2	Meet NPDES requirements	1	
	Practices to	W-3d	Implemen	tation of erosion control	1	
	Protect		practices			
	Water	W-3e	Staging co	onstruction to minimize soil	1	
	Quality		exposure			
		W-3f	Provide st	cormwater detention	1	
		W-3g	Reduce us	se of fertilizers and herbicides	1	
		W-3h	Protection	from materials entering	1	
			waterway	on bridge demolition and		
			constructi	on		
c		T-1a	Special us	se lane: High Occupancy	2	
Transportation			Vehicle, r	eversible		
sport		T-1b		e intersection/interchange	2	
Trans			design			
		T-1c	Expansion	n of or connection to a Traffic	2	

		Managem	ent Center (TMC)	
	T-1d	Installatio	on of coordinated signal system	l
T-1		T-1d-1	Installation of closed-loop	1
Traffic			system	
Operations		T-1d-2	Timing plans developed for	1
			weekend or special	
			events	
		T-1d-3	Advanced logic system	1
			such as adaptive control	
		T-1d-4	Inclusion of transit vehicle	1
			priority	
	T-1e	_	or consolidating access points	1
		along hig	hway	
	T-1f	Bus turno		1
	T-2a		ew Park-and-Ride lots	<u> </u>
		T-2a-1	Evaluate demand and	1
			effectiveness of potential	
		T a a	Park-and-Ride lots	1
т 2		T-2a-2	Construction of Park-and-	1
T-2 Transit	T 0		Ride lots	1
Transit	T-2b	-	al improvements of an	1
	T-2c		Park-and-Ride lot ike accommodations at Park-	1
	1-2C		lots & transit stations	1
	T-2d		shading through vegetation	1
	1-20	_	nd-Ride lots	1
	T-2e		ew multi-modal connections	1
	T-2c T-2f		us stops with shelters or pads	1
	1 21		strian access	
	T-2g		on of a transit express system	3
	T-3a		onditions –Perform bicycle	1
	1.54	1.00000 00		-

			and pedes	strian Level of		
			-	nalysis within the roadway		
			corridor	narysis within the foulway		
		T-3b	Improved	intersection designs for	1 to 2	
		1 00	pedestria	0	1.00 -	
		T-3c	-	ew or rehabilitate existing side	walks or bik	eways
		1 50	T-3c-1	Provide new sidewalks or	2	eways
	T-3		1-50-1	bikeways	2	
	Improve		T-3c-2	Rehabilitate sidewalks or	1	
	Bicycle and		1-30-2	bikeways	1	
	Pedestrian	T-3d	Sidowall	or bikeway widening		
	Facilities	1-50			1	
	1 definities		T-3d-1	Widen sidewalk or bikeway	1	
			T-3d-2	Provide parkway separation	1	
		T-3e	U	Designated space for cyclists (shared		
			lanes)			
		T-3f	Striped bi	ike lanes within roadway	2	
		T-3g	Restore o	r pave shoulders for bicycling	2	
		T-3h	Create pa	rallel bike routes	1	
		T-3i	Align the	roadway to facilitate the	1	
			developm	ent of future multi-		
			use paths	and facilities		
		T-3j	Provide n	ew grade-separated (bridge	3	
			or underp	ass) bike/pedestrian crossing		
			structure			
		T-3k	Install bil	keway signs	1	
		T-31	Install bio	cycle racks	1	
		L-1a	Use of alt	ernative energy source to	2	
ad			power str	eet lighting, warning signs,		
Lighting			and remo	te Intelligent Transportation		
Lig			Systems			
			(ITS) con	nponents		

		L-1b	Retrofit ex	isting street lighting with	2
	L-1		high efficie	ency types	
	Reduce	L-1c	Replace sig	gns with retro reflective	2
	Electrical		signs to eli	minate sign lighting	
	Consumption	L-1d	Retrofit ex	isting sign lighting with	1
			high efficie	ency types	
		L-1e	Use of high	h efficiency street lighting	2
			on new ins	tallations	
		L-1f	Use of alte	rnative energy source for	2
			bus stops		
		L-1g	Use of high	h efficiency (such as LED)	1
			traffic sign	als	
	L-2	L-2a	Retrofit ex	isting roadway lighting	2
	Stray light		fixtures using cut off or full cut off		
	Reduction		fixtures		
		L-2b		vay lighting using cut off or	2
			full cut off		
		M-1a	Reuse of to	-	1
		M-1b	Balance cu		
			M-1b-1	Balance cuts and fills for	1
				the project	
			M-1b-2	Balance cuts and fills per	1
s				stage	
Materials		M-1c		ls within project corridor to	2
Mat				naterial in and out of site	
		M-1d		olization of concrete	1
	M-1			nd concrete pavements	
	M-1 Materials	M-1e		ibility in design with the use	ot recycled or
	iviaici iais		salvaged	1 / 1	
				lous material	
			M-1e-1	Allow the processing of	1

· · · · · · · · · · · · · · · · · · ·		1 1 1 1 4		
		demolished concrete to		
		reclaim scrap metals to		
		create useable aggregate.		
	M-1e-2	Allow the use of milled	1	
		HMA pavements for		
		capping stone.		
	M-1e-3	Allow the use of recycled	1	
		crushed pavements for		
		temporary aggregate for		
		areas like driveways or		
		access roads		
	M-1e-4	Allow the use of recycled	1	
		crushed pavements for		
		shoulder stone		
	M-1e-5	Allow the use of recycled	1	
		crushed pavements as		
		aggregate for subgrade,		
		sub-base, or base lifts		
	M-1e-6	Allow reclaiming sub-base	1	
		granular material		
	M-1e-7	Provide for optional reuse	1	
		of reclaimed scrap		
		materials for various items		
		(sheeting, guard rail, etc.)		
M-1f	Allow loca	ally produced byproducts to be	e reused in th	ne
	constructio	on of embankments, hot mix a	sphalt and P	ortland
	cement con	ncrete mixtures		
	M-1f-1	Allow the use of fly ash,	1	
		ground granulated blast		
		furnace slag cement, and		
		micro silica in concrete		
		mixtures		

	M-1f-2	Allow the use of ternary	1	
		concrete mixtures in the		
		construction of concrete		
		pavements, shoulders		
		and various structural		
		items		
	M-1f-3	Allow the use of foundry	1	
		sand or bottom ash as		
		part of a material in the		
		construction of		
		embankments		
	M-1f-4	Allow the use of slag	1	
		aggregate in the production		
		of HMA mixtures (SMA		
		Designs and "F" Mix).		
	M-1f-5	Allow the use of Recycled	1	
		Asphalt Shingles (RAS) in		
		the production of Stone		
		Matrix Asphalt Mixtures		
		(SMA)		
	M-1f-6	Obtain and implement a	1	
		project specific use for		
		the innovative reuse of		
		waste materials other than		
		the ones listed above.		
M-1g	Allow the	use of recycled asphalt pavem	ent (RAP) ii	n the
	constructio	on of new hot mix asphalt pave	ements	
	M-1g-1	Allow the use of recycled	1	
		asphalt pavement (RAP)		
		in hot mix asphalt (HMA)		
	M-1g-2	Allow the use of	1	
		fractionated recycled		
		-		

L		T		1	1
			asphalt pavement (FRAP)		
			at a higher percentage in		
			the manufacturing of hot		
			mix asphalt.		
	M-1h	Allow incl	lusion of environmentally	1 to 2	
		acceptable	and permitted sites in the		
		contract de	ocuments for the disposal of		
		surplus ex	cavated material to an off-		
		site locatio			
	M-1i	Allow the	salvage / moving of	2	
		buildings			
	M-1j	Soil stabil	ization with geosynthetics	1	
	M-1k	Soil stabil	ization with cementitious	2	
		and recycl	ed materials		
	M-11	Consider 1	ocally available materials	1	
		(such as lo	ocal seed stock and plants) in		
		developing	g specifications for the		
		project			
	М-	Extended	pavement life; design and reha	abilitation str	ategies
	1m	M-1m-1	Specify the use of	3	
			perpetual HMA pavement		
			design		
		M-1m-2	Specify the use of 30 year	2	
			design life concrete		
			Pavement		
		M-1m-3	Specify the use of 40 year	3	
			design life concrete		
			Pavement		
		M-1m-4	Specify the use of	1	
			pulverization of HMA		
			pavement for a base		
		M-1m-5	Specify the use of various	1	
				1	1

					pavement preservation		
					processes such as chip		
					seal, seal coat, micro		
					resurfacing, etc.		
				M-1m-6	Selecting hot-in-place or	2	
					cold-in-place recycling		
					of hot mix asphalt		
· H		I-1	I-1a	Use of Exp	perimental Feature(s) to	1 to 3	
Innovati		Innovations		improve th	e sustainability of a project		
Inn	uo						

2.2.6 Green Guide for Roads

The initial framework for Green Guide for Roads includes 13 areas -- Community interface, Valued environmental components and land consumption, Mobility choices, Intersections and driveways, Hard surfaces, Landscaping, Amenities, Drainage, Safety, Energy consumption, Construction, Operations and maintenance, Services and utility -- where sustainability practices can be applied, with a description of requirements and associated best practices or strategies. The Guide applies to all types of roads in urban and rural settings and includes sustainability considerations such as improved compatibility and livability, universal accessibility, modal equity, conservation of resources, affordability on a full life-cycle basis, and environmental protection.

3. Sustainability Performance Measurement Framework

During the last two decades, measurement of sustainability issues by indicators has been widely used by the scientific community and policy-makers. Development of sustainable indicators was first brought up as a political agenda issue at the United Nations Conference on Environment and Development (UNCED) held in Rio de Janeiro in 1992.

3.1 Sustainability Indicators

An indicator is a tool that quantifies complex physical and social phenomena and presents them in a way that can inform the decision-making process. The following are the various functions of indicators or performance measures:

- 1. They can help with the comparison of similar trends across jurisdictions.
- 2. They can help with the comparison of different phenomena.
- 3. They can help with the understanding of trends.
- 4. They can help with evaluating progress towards or away from defined goals or targets.

Decade Indicator Work Began	Type of Indicators
1940s - 1950s	Economic
1960s	Social, Quality of Life
1970s	Environmental and Natural Resource, Health
	and Safety
1980s	Healthy communities
1990s - 2000s	Sustainable Development
2000s - 2010s	Sustainable Development in fields such as the
	Transportation Sector

Table 3-1: Timeline of Indicator Development

There is currently no standard set of sustainable transportation indicators. A variety of indicators are used, some of which are particularly appropriate and useful for planning and policy analysis. It would be highly desirable for transportation professional organizations to develop standardized, "baseline" indicator sets, with consistent definitions and collection

methods, suitable for comparing impacts and trends between different organizations, jurisdictions, and times. This can include some indicators suitable for all situations, and others for specific needs and conditions. Table 3-2 lists various possible sustainable indicators within different categories of sustainable transport planning concern.

Category	Subcategory	Indicator							
	Vehicles	Motor Vehicle Ownership							
	Mobility	Motor vehicle Travel							
Travel Activity		Portion of trips by auto, public							
	Mode split	transit, and non-motorized							
		modes							
	Emissions	Total vehicle emissions							
	Air pollution exposure	Number of days of exposure							
		per year							
Air Pollution Emissions	Climate change	Climate change							
		emissions(CO2, CH4)							
	Embodied emissions	Emissions from vehicle and							
		facility construction							
	Traffic noise	People exposed to traffic noise							
Noise Pollution		above 55 LAeq,T							
	Aircraft noise	People exposed to aircraft							
		noise above 57 LAeq,T							
	Crash causalities	Crash deaths and injuries							
Traffic risk	Crashes	Police-reported crashes							
	Crash Costs	Traffic Crash economic costs							
	Transport Costs	Consumer expenditures on							
		transport							
	Commute costs (time and	Access to employment							
	money)								
Economic Productivity	Transport reliability	Per capita congestion							

 Table 3-2^[10]: Potential Sustainability Indicators in General

	Infrastructure costs	Expenditure on roads, public						
		transit, parking, ports, etc.						
	Shipping costs	Freight Transport efficiency						
	Mobility options	Quality of walking, cycling,						
		public transit, driving, taxi,						
		etc/						
Overall Accessibility	Land Use accessibility	Quality of land use						
		accessibility						
	Mobility substitutes	Internet access and delivery						
		service quality						
	Sprawl	Per capita impervious surface						
		area						
	Transport Land Consumption	Land devoted to transport						
Land Use Impacts		facilities						
	Ecological and cultural	Habitat and cultural sites						
	degradation	degraded by transportation						
		facilities						
	Affordability-transportation	Portion of household budgets						
		needed to provide adequate						
		transport						
Equity	Affordability-housing	Affordable housing						
		accessibility						
	Basic accessibility	Quality of accessibility for						
		people with disabilities						
	Pricing efficiency	Cost-based pricing						
	Strategic planning	Degree to which individual						
		planning decisions support						
Transport policy and planning		strategic goals						
	Planning efficiency	Comprehensive and neutral						
		planning						
	User satisfaction	User survey results						

3.2 Performance Measures Currently Used By ALDOT

In 2009, Professor Heather Shar, from UAH, was contracted by the ALDOT Planning, Construction, Maintenance, Bridge Design, and Aeronautics Bureaus to collect information on different performance indicators to be used by ALDOT to study the performance of the transportation sector in Alabama (see Appendix A for the Survey). The following are the list of performance indicators used by ALDOT:

- Traffic Count
- Construction Cost
- Number of Safety Incidents
- Vehicle Miles Traveled
- Travel Time
- Speed
- Density (passenger cars per hour per lane)
- Level of Service
- Travel Time Reliability
- Percent of System Congested
- Travel Costs
- Vehicle Occupancy

- Weather- related traffic incidents
- Rail Grade Crossing Incidents
- Duration of Delay Caused by Accidents
- Response time to Incidents
- Commercial Vehicle Safety Violations
- Security for Highway and Transit
- Weather related Road Closures
- Response Time to Weather-related Closures
- Evacuation Times
- Toll Revenue
- Operating Budgets
- Maintenance Funds

Traffic count, construction costs, and number of safety incidents were reported as the primary measures.

3.3 Selection of Performance Measures for Transportation Sustainability

NCHRP 708 [4] defines a set of 11 goals in the framework that serve as guidance for a set of sustainability goals. The performance indicators used by ALDOT don't address sustainability issues. The recommendation of this report is to add the list in Table 3-3 to ALDOT's current list of performance measures.

Although it is not directly tied to determining the system performance level, public opinion is of vital importance to ALDOT's ability to maintain and increase the funding levels and support

necessary to effectively perform their stated mission. In addition, surveys should be conducted to enhance the performance measures.

Project Re	equirements
PR-1	Build Project Framework and Objectives
PR-2	Multi-Discipline Project Team
PR-3	Public Stakeholder Engagement
Transport	ation
Safety	
S-1	Reduce the number and severity of crashes.
S-2	Plan road networks that are predictable and recognizable.
S-3	Develop programs that maximize return on safety investment.
S-4	Prioritize projects with explicit safety considerations.
S-5	Reduce crash risk in work zones.
Access &	Equity
AE-1	Ensure accessibility to essential destinations.
AE-2	Minimize travel time delay (by mode) for affected population due to construction
	and maintenance activities.
AE-3	Improve travel time reliability to jobs and other essential destinations through
	operational improvements.
AE-4	Ensure comparable transportation system performance for all communities.
AE-5	Program transportation projects that improve transportation infrastructure
	equitably.
Security	
SEC-1	Prevent incidents within a transportation agency's control and responsibility.
SEC-2	Program projects that enhance the security of freight transportation assets (e.g.
	ports).

Table 3-3: Recommended Sustainable Performance Measures to be adopted by ALDOT

Enviror	ımental
Ecosyst	ems
E-1	Ensure properly functioning environmental and ecological systems.
E-2	Maintain ecosystem functions and processes.
E-3	Conserve natural resources/capital during project implementation.
E-4	Maintain enterprise-wide habitat connectivity.
E-5	Reduce exposure to pollutants and contaminants during project implementation.
E-6	Apply context sensitive corridor habitat restoration and landscaping during project
	implementation.
Emissio	ns & Air Quality
A-1	Reduce activity that generates pollutant emissions.
A-2	Increase land use compactness, density, and balance of interacting uses
	(compactness, density, balance).
A-3	Increase the use of non-motorized modes.
A-4	Reduce congestion; promote low emissions travel speeds.
A-5	Reduce traffic volumes on major highways within critical distance of sensitive
	receptors (schools, hospitals, residences, ethnic/racial equity).
Constru	action Activities
Resourc	ce Consumption
R-1	Maintain a sustainable fleet.
R-2	Use renewable energy to provide project power.
R-3	Provide electric vehicle infrastructure.
R-4	Encourage the sensible use of recycled materials in project programming.
R-5	Purchase regionally-produced construction materials.
Waste (Generation
W-1	Reduce total waste created.
W-2	Ensure transportation infrastructure (e.g., pavements, bridges, etc.) is designed for
	long life.
W-3	Clean up existing hazardous waste.

W-4	Change in average design life of infrastructure [by major component] due to
	program.
Social &	Economic
System I	Efficiency
SE-1	Ensure that the transportation system is functional for all users.
SE-2	Ensure that the existing transportation system achieves and maintains a state of
	good repair.
SE-3	Program projects that maintain or improve the efficiency of the transportation
	system for all users.
SE-4	Maintain the functionality of the transportation system during construction
	activities.
Prosperi	ty
P-1	Support growth in jobs and income by improving travel efficiency/reducing
	congestion.
P-2	Program projects that reduce freight transportation costs.
Economi	ic Viability
EV-1	Ensure the expected value of social and economic benefits created by proposed
	transportation projects exceeds their costs.
EV-2	Ensure the selection of the lowest cost project alternative.
EV-3	Ensure construction costs are within planned budget.
EV-4	Ensure maintenance costs are within planned budget.
EV-5	Ensure operation costs are within planned budget.

4. Conclusion

The research project, carried out over a 12 month period, was designed to establish a baseline understanding of the potential for using sustainability performance measures in the Alabama Department of Transportation. Quite a number of sustainability initiatives have discussed various definitions and performance measures of sustainable transportation systems, but very few regional agencies have developed planning tools that successfully incorporate sustainability in transportation sector. This study develops a framework of sustainability performance measures, and incorporating sustainability considerations into the ALDOT's decision-making process. The recommended performance measures are found in Table 3-3.

The literature review indicates that the present status of addressing sustainability in transportation planning is more focused on the effectiveness and efficiency of transportation systems as well as the resulting environmental impacts, and less on economic and social impacts. The proposed framework should help decision-makers in transportation planning consider sustainability issues by identifying better plans for readily available objectives.

Future Research

Future research should proceed to incorporate broader environmental, economic, social impacts of transportation systems by modeling the interactions among these sustainability dimensions. Public opinion is to be considered and surveys should be conducted to enhance the performance measures. Further development and quantification of sustainability measures will help to incorporate the sustainability considerations more fully.

Acknowledgments

This project was supported by the University Transportation Center for Alabama under project 12302, "Developing Sustainable Transportation Performance Measures for ALDOT".

References

- Christine Ratekin. "Smart Mobility: A Survey of Current Practice and Related Research." Caltrans Division of Transportation Planning, April 25, 2011.
- "Guide to Sustainable Transportation Performance Measures." EPA 231-K-10-004, August 2011.
- "Integrating Sustainability into the Transportation Planning Process." Transportation Research Board of the National Academies, Conference proceedings 37, 2005.
- "A Guidebook for Sustainability Performance Measurement for Transportation Agencies." Transportation Research Board, NCHRP 708.
- Yi Lin Pei, Adjo A. Amekudzi, Michael D. Meyer, Elise M. Barrella, Catherine L. Ross, "Performance Measurement Frameworks and the Development of Effective Sustainable Transport Strategies and Indicators." TRB 2010 Annual Meeting.
- "Sustainable Transportation Access Rating System (STARS)" Pilot Project Application Manual, Version 1.0, November 23, 2010.
- Stephen T. Muench, Jeralee L. Anderson, "Greenroads: A Sustainability Performance Metric for Roadway Design and Construction." Transportation Northwest - Report No. TNW2009-13, December 2009.
- 8. "NSYDOT Sustainability and GreenLITES." New York State Department of Transportation.
- "I-LAST, Illinois Livable and Sustainable Transportation Rating System and Guide", Illinois Department of transportation, January 8, 2010.
- Todd Litman and David Burwell (2006), "Issues in Sustainable Transportation," International Journal of Global Environmental Issues, Vol. 6, No. 4, pp. 331-347.
- Tara Ramani, Josias Zietsman, William Eisele, Duane Rosa, Debbie Spillane and Brian Bochner, "Developing Sustainable Transportation Performance Measures for TxDOT's Strategic Plan." April 2009.
- 12. Josias Zietsman and Tara Ramani, "Sustainable Performance Measures for State DOT's and other Transportation Agencies." July 2011.
- 13. Richard Gilbert, Neal Irwin, Brian Hollingsworth, and Pamela Blais, "Sustainable Transportation Performance Indicators (STPI)."
- 14. "Sustainable Transportation Indicators." Sustainable Transportation Indicators Subcommittee of the Transportation Research Board (ADD40 [1]), 10 November 2008.

- 15. Christy Mihyeon Jeon "Incorporating Sustainability into Transportation Planning and Decision Making: Definitions, Performance Measures and Evaluation."
- "Establishing Performance Measures for Alabama's Transportation System," Final Report: ALDOT Project 930-698.
- Johns, R., et al., "Impact of Performance Measures on Internal and External relationships," Conference Proceedings 36: Performance Measures to Improve Transportation Systems. Washington DC: National Academic Press, 2005.
- Pickrell, S., & L, Neumann, "Use of Performance Measures in Transportation Decision Making, Conference Proceedings 26: Performance Measures to Improve Transportation Systems and Agency Operations. Washington DC: National Academic Press, 2001.

19. <u>https://www.sustainablehighways.org/</u>

APPENDIX A

Please return this survey to Heather Shar at the University of Alabama in Huntsville.

Email: sharh@uah.edu Fax: (256) 824-6970 Address: 301 Sparkman Dr. VBRH A-4 Huntsville, AL 35899

Name:	Title:
Bureau:	
Address:	
City/State/Zip:	
Phone:	
Email:	
What are the goals your bureau uses to measure success?	

Do you use this	Do you collect this	Do you distribute this	How important is	How desirable is	Other
information?	data? Circle or mark	information? Circle	this measure to	this measure to	Comments:
	yes or no.	or mark yes or no.	you?	you?	
Circle or mark yes or					
no	If <u>no</u> , write in from	If <u>yes</u> , write in to	On a scale of 1 to 5,	On a scale of 1 to	
	whom you receive	whom you distribute	with 1 being most	5, with 1 being	
	the data	the data	important and 5	most important	
			being least	and 5 being least	
			important	important	

Operations

Traffic Count			Yes	No	Yes	No										
	Yes	No					1	2	3	4 5	5	1	2	3	4 :	5
Vehicle-miles traveled			Yes	No	Yes	No										
	Yes	No					1	2	3	4 5	5	1	2	3	4 :	5
Travel time			Yes	No	Yes	No										
	Yes	No					1	2	3	4 5	5	1	2	3	4 :	5
Speed			Yes	No	Yes	No										
	Yes	No					1	2	3	4 5	5	1	2	3	4 :	5

Level of Service

Density (passenger cars per hour per lane)	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	
Recurring delay	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	
Level of service/Highway Capacity Manual	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	
Duration of congestion	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	
Travel time reliability	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	
Percent of travel	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5	

System Measures

Percent of system congested	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4 5	
Travel costs	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4 5	
Vehicle occupancy	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4 5	

Safety

Number of incidents			Yes	No	Yes	No									
	Yes	No					1	2	3	4 5	1	2	3	4	5
Weather-related traffic			Yes	No	Yes	No		_				-	-		_
incidents	Yes	No					1	2	3	4 5	1	2	3	4	5
Rail grade crossing			Yes	No	Yes	No									
incidents	Yes	No					1	2	3	4 5	1	2	3	4	5
Duration of delay caused	Yes	No	Yes	No	Yes	No	1	2	3	4 5	1	2	3	4	5

by incidents										
Response times to incidents	Yes	No	Yes	No	Yes	No	1 2 3	3 4 5	1 2 3 4	5
Commercial vehicle safety violations	Yes	No	Yes	No	Yes	No	1 2 3	3 4 5	1 2 3 4	5
Security for highway and transit	Yes	No	Yes	No	Yes	No	1 2 3	3 4 5	1 2 3 4	5

Environmental

Weather-related road			Yes	No	Yes	No				-					
closures	Yes	No					1	2 3	3 4	5	1	2	3 4	1 5	
Response time to weather-			Yes	No	Yes	No				-					
related closures	Yes	No					1	2 3	3 4	5	1	2	3 4	1 5	
Evacuation times			Yes	No	Yes	No									
	Yes	No					1	2 3	3 4	5	1	2	3 4	1 5	

Toll

Toll revenue			Yes	No	Yes	No	
	Yes	No					1 2 3 4 5 1 2 3 4 5
Delay from toll collection			Yes	No	Yes	No	
	Yes	No				-	1 2 3 4 5 1 2 3 4 5
Delay from incidents			Yes	No	Yes	No	
	Yes	No					1 2 3 4 5 1 2 3 4 5

Financial

		Yes	No	Yes	No									
Yes	No					1	2	3	4 5	1	2	3	4 :	5
		Yes	No	Yes	No									
Yes	No					1	2	3	4 5	1	2	3	4	5
			Yes No Yes	Yes No Yes No	Yes No Yes No Yes	Yes No Yes No	Yes No 1 Yes No Yes No	Yes No 1 2 Yes No Yes No	Yes No 1 2 3 Yes No Yes No	Yes No 1 2 3 4 5 Yes No Yes No Yes No	Yes No 1 2 3 4 5 1 Yes No Yes No Yes No I <	Yes No 1 2 3 4 5 1 2 Yes No Yes No Yes No Image:	Yes No 1 2 3 4 5 1 2 3 Yes No Yes No Yes No Image: No	Yes No 1 2 3 4 5 Yes No Yes No 1 2 3 4 5

University Transportation Center for Alabama

2010-2012 Advisory Board

Mr. Steve Ostaseski, Chair Regional Planning Commission of Greater Birmingham

Mr. Mark Bartlett, Vice-Chairman Division Administrator Federal Highway Administration

Mr. Don Arkle Assistant Chief Engineer for Policy and Planning Alabama Department of Transportation

Mr. James R. Brown Transportation Engineer Gonzales-Strength & Associates, Inc.

Mr. Randy Cole Engineer Shelby County (AL) Highway Department

Mr. George Conner State Maintenance Engineer Alabama Department of Transportation

Mr. Eddie Curtis Traffic Management Specialist Federal Highway Administration

Mr. Larry Lockett Bureau Chief, Materials & Tests Alabama Department of Transportation

Mr. James Moore Municipal Transportation Planner City of Huntsville (AL)

Mr. Billy Norrell Executive Director Alabama Road Builders Association

Mr. Joe Robinson Engineer City of Tuscaloosa (AL)

Executive Committee

Dr. Jay K. Lindly, Director UTCA The University of Alabama

Dr. Michael Hardin, Associate Director UTCA The University of Alabama

Dr. Fouad H. Fouad, Associate Director UTCA The University of Alabama at Birmingham

Dr. Houssam A. Toutanji, Associate Director UTCA The University of Alabama in Huntsville

Staff

Ms. Connie Harris, Secretary UTCA

Contact Information University Transportation Center for Alabama 1105 Bevill Building Box 870205 Tuscaloosa, AL 35487-0205 (205) 348-9925 (205) 348-6862 fax

> utca@eng.ua.edu http://utca.eng.ua.edu